

Plasma facing components beyond ITER – solid materials

F. Maviglia With contribution from:

G. Federici, C. Bachmann, L. Boccaccini, F. Cismondi, E. Diegele, R. Neu, G. Pintsuk, M. Siccinio, J. H. You, EUROfusion PPPT team and PLs

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline

- Introduction: ITER and DEMO PFC requirements
- Materials R&D for DEMO the baseline options
	- Plasma Facing Materials (Armor)
	- Copper-alloys (Heat sink materials)
	- Ferritic-martensitic steels (Structural Material)
- DEMO heat load requirements
	- First Wall (FW) and Limiters
	- **Divertor**
- **Conclusions**

EUROfusion consortium

agreement signed in 2014 by:

- 29 research organisations
- 26 European Union member states plus Switzerland signed and , as of 1 January 2017, Ukraine.
- In addition about 100 Third Parties contribute to the research activities through the Consortium members.
- EUROfusion collaborates with Fusion for Energy (Spain) and intensively supports the ITER International Organization (France).

Power Plant Physics and Technology Department (PPPT)

Pre-conceptual design of DEMOnstration (DEMO) Fusion Power Plant to follow ITER, capable of generating several 100MW of net electricity and operating with a closed fuel-cycle around the middle of the century.

Geographically distributed team:

- **WPPMI:** Plant Level System Engineering, Design Integration and Physics Integration
- **WPBB:** Breeding Blanket project;
- **WPBOP:** Heat transfer, Balance-of-Plant and Site project;
- **WPDC:** Diagnostic and Control project;
- **WPDIV:** Divertor project;
- **WPHCD:** Heating and Current Drive systems project **;**
- **WPMAG:** Magnets System project;
- **WPMAT:** Materials project;
- **WPRM:** Remote Maintenance System project**;**
- **WPSAE:** Safety and Environment project**;**
- **WPTFV:** Tritium, Fuelling & Vacuum systems project**;**
- **WPENS:** Early Neutron Source project**;**

F. Maviglia – ITER&DEMO | University of Tuscia | Viterbo, Italy | 17-18/05/2017 | Page 4

Recap of Major DEMO Design Issues

For any further fusion step, safety, T-breeding, power exhaust, RH, component lifetime and plant availability, are important design drivers and CANNOT be compromised

Tritium breeding blanket

- most novel part of DEMO
- \checkmark TBR >1 marginally achievable with thin PFCs/few penetrations
- \checkmark Feasibility concerns/ performance uncertainties with all concepts -> R&D
- \checkmark Selection now is premature
- ITER TBM is important

conversion tium breeding zone

Divertor Power Exhaust

- $\sqrt{\frac{P\text{eak}}{P\text{eak}}}$ heat fluxes near technology limits (>10 MW/m²)
	- $\sqrt{}$ Use H₂O as coolant and Cu-alloy
	- $\sqrt{$ ITER solution may be marginal for DEMO
	- Advanced solutions may be needed but integration is very challenging. A dedicated DTT is planned

Case 2 W., = 0.65GJ @TC Case 1 W.,_=1.3GJ@T(

Off normal transients are a major design driver. DEMO requires dedicated FW protections in some areas.

Plasma transients

Materials

- \checkmark Embrittlement of RAFM steels at low temp. and loss of mech strength at \sim high temp.
- \checkmark Progressive blanket operation strategy (1st) blanket 20 dpa; 2nd blanket 50 dpa)
- \checkmark Need irradiated matl property data and structural design criteria.
- \checkmark Urgent need of a dedicated fusion irradiation facility (IFMIF-DONES)

Main differences ITER and DEMO

Fusion Materials Challenge

D&T react in the 'fusion furnace' The energetic neutron stops in the "blanket", heating (to finally produce electricity), BUT

Outline

- Introduction: ITER and DEMO PFC requirements
- Materials R&D for DEMO the baseline options
	- Plasma Facing Materials (Armor)
	- Copper-alloys (Heat sink materials)
	- Ferritic-martensitic steels (Structural Material)
- DEMO heat load requirements
	- First Wall (FW) and Limiters
	- Divertor
- **Conclusions**

Liquid metals to be presented in the next seminar by D. Andruczyk

Plasma Facing Materials (Armor)

Materials for plasma facing components

Plasma Wall Interaction in Fusion Devices

Plasma Wall Interaction in Fusion Devices

Sputtering yields of PFM

Erosion assessment from laboratory data:

Physical sputtering: understood and well predictable Chemical sputtering: complicated, multi-step process can be strongly modified by material mixing surface carbides inhibit chemical erosion

E. Salonen, Phys.Rev.B 2001, M. Balden, J.Nucl.Mat. 2000

T retention in PFM Projection to ITER

T retention given by

- Co-deposition
- Diffusion

Strongly dependent on

- background plasma flux
- erosion/deposition fluxes
- power fluxes / surf temperatures
- materials change under
	- He impact and
	- neutron irradiation

Properties of PFM candidates

- CTE copper = 16.10^{-6} K⁻¹
- ** NB31 in pitch fiber direction
- *** Be not suitable for divertor. Be/W mix less stable

Thermal loads during fast transients: ELMs

ELM-size determines lifetime of ITER divertor

maximum ELM energy due to thermal fatigue (see below) \rightarrow 1 MJ in the divertor

Thermal loads during fast transients: ELMs

Cumulative material damage during ELMs

EU/RF collaboration, with experiments in Russian plasma guns and EU modelling

- ITER relevant thermal loads
- Tungsten target prior to exposure

R. Giniyatulin (Efremov Inst.)

Zhitlukin, Safronov, Podkovyrov et al. (SRC RF TRINITI, Troitsk), Loarte, Merola

shots in QSPA plasma gun test facility \checkmark 1 MJ/m² $\sqrt{0.5}$ ms • Shots at 1.5-1.8 MJ/m² \times At 1.5 MJ/m² melt loss 15 mg/ELM, erosion dept **~0.3 µm/ELM** (Model RACLETTE: **0.2 µm** @ these

• Tungsten target after 5

conditions).

THERMAL steady state

W-recrystallization/grain growth: (up to several mm): Temp limit 1300°C depending on **power density**, **joint quality**, **tungsten thickness** and **material**

300 µm

Improvement of tungsten properties: WfW

Production of **tungsten-fibre rein-forced tungsten** by chemical infiltration (CVI) of a W-wire arrangement 'Proof of principle' successful:

- high material density achieved
- strongly improved ductility

Fracture surface of W^f /W after Charpy impact test

Aim

• Increase the toughness of W (resistance against cracking)

Characterization of toughness

- Charpy impact tests \rightarrow ductile fibres
- Monotonic tensile test
	- \rightarrow no catastrophic failure
- Low cycle fatique testing
	- \rightarrow 10000 cycles at 60% of maximum stress

reached even without optimized material

Improvement of tungsten properties: WfW

PFM: Developments for DEMO

Refractory Materials for DEMO Divertors

In close cooperation with Plansee company

Hot-rolled, coarse-grained W Test temperature: RT

Severely cold-rolled, ultrafine-grained W; Test temperature: RT

\rightarrow Severe cold-rolling makes W ductile

J. Reiser et al., Int. J. Refract. Met. Hard Mater. 64 (2017) 261–278

Copper-alloys (Heat sink materials)

Heat sink: material requirements

Solid elements with thermal conductivity $\kappa > 50$ W/mK (RT)

Irradiation effects in CuCrZr

Courtesy of J.H. You,

Heat sink: developments for DEMO

need to increase the mechanical strength and toughness need to decrease CTE difference to PFM

- **P** particle reinforced materials, e.g. $W_p/CuCrZr$, ...
- $CuCrZr + X (X = Ta, V, ...)$

Issues

increase of operational window (CuCrZr: 300-350°C)

W^p /CuCrZr (industrially available)

Heat sink: developments for DEMO

need to **increase the mechanical strength and toughness** need to **decrease CTE difference to PFM**

- fiber reinforced materials, e.g. $W_f/Cu(CrZr)$, ...
- laminates, e.g. W/Cu, W/V, W/Ti …

Issues

- increase of operational window (CuCrZr: 300-350°C)
- **fiber architecture – 2D/3D**
- microstructural stability multilayer systems incl. diffusion barriers) joints: laminate/PFM, laminate/steel (leak tightness)

Wf /Cu(CrZr)

multilayer braiding

pipe cross section W fibre reinforced Cu pipes

Technology tested on small scale mock-ups

ITER-like

- ◆ Mock-up production mostly completed.
- \dots High-heat-flux testing reached 500 load cycles.

Composite pipe (W_f/Cu)

1 mm

 $C_{C_{\mathcal{K}}}$

Thin graded interlayer (W/Cu)

Thermal break

J.H. You et al., SOFT 2018

High-heat-flux (HHF) fatigue test: water-cooled

GLADIS: neutral beam (H/He) irradiation facility (IPP)

Technical data:

- Power: 2 x 1 MW ion sources
- Voltage: 15-50 kV
- Heat flux: 2-45 MW/m²
- beam size: \varnothing 70 mm (80% central q')
- Pulse duration 1 ms 45 s

Cooling

- T_{in} : 20 230 °C, T_{out} : < 250 °C
- Flow rate: ≤2 (8.5) l/s, p ≤ 55 bar

Diagnostics

- Water calorimetry (thermocouples)
- Fast one and two-colour pyrometers
- High resolution CCD & IR cameras

HHF fatigue test: water-cooled (20MW/m², 130°C)

Ferritic-martensitic steels (Structural Material)

Effects of n-irradiation on materials

J.L. Boutard **Radiation damage mechanisms: embrittlement, thermal creep, swelling, etc. to be carefully considered in the design phase (eng. approach & safety margins).**

He/dpa = <1 (fission); > 10 (fusion)

H/dpa = 10 (fission); > 40 (fusion)

Lowest swelling occurs in BCC alloys (Ferritic steels)

Reduced Activation FM Steels – elements that generate radioactive isotopes were replaced/reduced, e.g. Cr as major alloying element and Ta, W, V, repl. high activation elements (Ni, Al,...)

- FM steels are however subject to radiation embrittlement
- Lose mechanical strength at \sim 550°C (upper limit)
- Suffer from thermal creep (accelerated) by irradiation
- Unknown effect of helium embrittlement

Narrow design temperature operation window

 High He conc. due to transmutation may further narrow design window (expected at dose > 20 dpa, i.e., 300-500 He appm)

Ductile-Brittle Transition Temperature DBTT

Francesco Maviglia | 10th ITER International School | Daejeon, South Korea | 21-25 Jan. 2019| Page 32

Conventional austenitic steels swell and get activated

W (plasma facing material)

- lower limit determined by DBTT ≈ 300-400°C (non-irradiated state, strain rate dependent) and ~600-800°C (irradiated state)
- upper limit determined by recrystallization $\approx 1300^{\circ}$ C (impurity dependent)

 \rightarrow 800°C – 1300°C

CuCrZr (heat sink material)

- lower limit maybe determined by radiation hardening ≈ 250-275°C
- upper limit determined by material strength (softening)

 \rightarrow 275°C (150-200°C?) – 350°C

EUROFER97 (structural material)

- lower limit determined by DBTT ≈ -50°C (non-irradiated state) and ~200-300°C (irradiated state, ≤ 20 dpa)
- upper limit determined by material strength (softening)

\rightarrow ~300°C – 550°C

Modified from: Hiroyashi Tanigawa, QST

 14MeV fusion neutron irradiation (like IFMIF-DONES) will be essential for both, validation/confirmation and reduction of unnecessary conservatism in "allowables"

Outline

- Introduction: ITER and DEMO PFC requirements
- Materials R&D for DEMO the baseline options
	- Plasma Facing Materials (Armor)
	- Copper-alloys (Heat sink materials)
	- Ferritic-martensitic steels (Structural Material)
- DEMO heat load requirements
	- First Wall (FW) and Limiters
	- Divertor
- **Conclusions**

Plasma scenario: JET example

Plasma scenario: JET example

Plasma disruption: JET pulse 79310

Plasma scenario: JET example

Possible damages due to plasma transients

Slow melting of **ILW Be limiters** during plasma limited phase Melting of Be limiter due to unsuccessfully mitigated runaway electrons (REs) experiment following a disruption Image of the melted edge of the special divertor tungsten lamella during ELM-induced transient W melting

G F Matthews, et al., Phys. Scr. T167 (2016) 014070

ITER:

- A large fraction of ITER's Cu-alloy first-wall can be designed for up to \sim 5 MW/m². (CuCrZr has extremely high K~300 W/mK but irradiation lifetime of only ~10 dpa)
- In case of heat load transients Be armour (low melting point) acts as a 'buffer' and off-sets temperature increase in structure by evaporation resulting in surface damage

DEMO:

- Tritium self sufficiency
- W armour (high melting point) conducts heat to the heat sink overheating the cooling channels, evaporation only at very high $T \rightarrow$ poor resistance against heat load transients
- DEMO FW structural material: EUROFER (much lower thermal conductivity K~30 W/mK, but high irradiation lifetime) \rightarrow Steady state heat loads limited to \sim 1 MW/m²

Francesco Maviglia | 10th ITER International School | Daejeon, South Korea | 21-25 Jan. 2019| Page 40

Present ITER limit up to 4.7MW/m² : DEMO load spec. to be developed independently

DEMO Breeding blanket wall load limits

DEMO breeding blanket requirements comparing to **ITER**:

- \Box Tritium breeding self sufficiency
- **D** Power conversion (High temperature \rightarrow high efficiency)
- \Box High neutron irradiation lifetime materials

Difference in present design:

- **Heat sink: Eurofer** due to high neutron irradiation capability, (instead of **Cu**)
- Coolant: **H₂O** or **He** at high temperature for efficient power conversion.
- Armour material: **W** (instead of **Be**).
- Static load limitations (from DEMO WPBB):
- ✴ **Water-cooled: ~1.5 MW/m²** .
- ✴ **Helium-cooled: ~1.0 MW/m²** .

Coolant **He/H2O** high press/temp

W (2mm)

Eurofer (3mm)

breeding zone

First wall - breeding blanket

Static loads: Conservative $-P_{\text{sep}}$ slow transient

E.g.: 3D FW proposal

OF INNER BLANKET MODULE

MAX HEIGHT

11565

12941 MAX HEIGHT OF OUTER BLANKET MODULE

C/L VESSEL

Francesco Maviglia | 10th ITER International School | Daejeon, South Korea | 21-25 Jan. 2019| Page 42

THE T. DOMOTH'S TAX

Static loads: Conservative $-P_{\text{sep}}$ slow transient

Conservative, R. Wenninger, NF 2017

Radiation loads: **CHERAB** code using Core (**ASTRA**) + SOL (**SOLPS**) radiation

Charged particles: **PFCflux/SMARDDA** 3D field-line tracing

EOF: Carr/Subba *CHERAB/SOLPS*

3D fieldline tracing + radiation during steady state

CEA: J. Gerardin. M. Firdaouss, CCFE: Carr shadowing may be possible in limiter are used

m30: Outer baffle area being corrected by more recessed BB

m8-m9:Upper-inner area 1/3-1/2 lower in nominal case ($P_{\text{Aq5cm}} \approx 15$ -20MW): P_{sep} = 230MW not compatible with divertor limits for SS.

Misalignments penalty factor will increase the values, but

Transient analysis: Ramp-up limited phase

- Plasma ramp-up assumed from $+0.1$ MA/s up to $+0.2$ MA/s.
- $\Box \lambda_{q}$ = 6mm, Psol[MW] = Ip[MA]
- \Box X-point to be formed at 3.5MA to 6MA (based on ITER): $t_{RU}= 20s$ to 60s

Limited eq. 6MA, 4 limiters

 $P_{SOL} = 6MW \lambda_q = 6mm$

Max HF = 3.5 MW/m² (ITER rescale)

Misalignments may be reduced if limiter adjustable at OMP port. Bare wall HF ≈3-4MW/m²: variant 1 not compelling No relevant HF found on other BB modules, nor on the limiter during flat-top phases

1: KDI1 disruption simulations: HF and REs

Definition of disruption cases, and relative inputs, *e.g.*:

- perturbation time evolution *Bpo*^l , *Lⁱ* , *Ipla*
- TQ,CQ, times evolutions, Runaways Electrons (REs) energy fraction, Vapor shielding, etc.
- Control perturbations
- Electromagnetic simulations
- 2D heat flux (HF) calculation of radiated and charged particle
- Realistic controller-diagnostics from end 2018-2019

Transient analysis for plasma-wall contact phases

Transient analysis for plasma-wall contact phases:

- \Box Disruptive H-L transition
- \Box VDF
- \Box Ramp-up/down limiter phases

Preliminary disruptive events table develop.:

- Time duration estimated ranges
- \Box Energy content
- \Box Geometric position of Plasma-wall interaction

Will be used to evaluate the technological solutions, and to give the requirements for the HHF component designer: *e.g.*

- \Box surface shape,
- \Box components misalignment,
- \Box number of toroidal modules,
- \Box position (may be modified with plasma conf.)

Aim to obtain ITER like load spec. and map

Transient analysis: thermal quench during a VDE

Upward Vertical Displacement Event (VDE) modelled as [R. Wenninger, EPS 2017]:

- Plasma moves upward, then becomes limited until $q_a=2$ when TQ is triggered
- Disruption SOL broadening: x7 from TQ onset (λ_q =7mm)

Plasma thermal energy content deposited in 4ms: 1) W_{th} =1.3GJ (Full), 2) W_{th} =0.65GJ (half)

F. Maviglia | ISFNT-13 | Kyoto, Japan | 27/09/2017 | Page 48

Unmitigated disruption simulations

 12

Unmitigated disruption simulations:TQ

Upward Vertical Displacement Event (VDE) modelled as [R. Wenninger, EPS 2017]:

- Plasma moves upward, then becomes limited until $q_a=2$ when TQ is triggered
- Disruption SOL broadening: x7 from TQ onset (λ_{α} =7mm)

Plasma thermal energy content deposited in 4ms: 1) W_{th} =1.3GJ (Full)

RACLETTE slow transient analysis

Analysis performed with code RACLETTE [1]. Fast thermo-hydraulic assessment, for broad parametric scans. It includes:

- 1D geometry with 2D corrections.
- All the key surface processes such as evaporation, melting and radiation.

[1] A. Raffray, G. Federici, Journal of Nucl. Materials (1997).

RACLETTE: Thermo-hydraulic simulation

RACLETTE [1] simulation of Limiter (W-divertor like with 2cm armour) inputs:

• Power density 0.2 to 20GW/m², deposition time 5 ms
* BACLETTE 20CW/m² for 1ms and LO FW:

- Temperature gradient between W-melting front and pipe ≈fixed if melting layer << W armour thickness
- **Slower transient:** CuCrZr below temp. limit (350°C) with **armor ≥ 20mm**. Mitigation expected by vapor shielding
- In steady state calculated HF ≈0.5 to 1 MW/m2 (mainly radiative): temperature at W-surf 800-1200°C

Wall protection concept is based on extruding limiters preventing the plasma contacting the BB FW

Rationale:

- BB FW will fail in case of heat loads causing melting of its armour (because it is made of Eurofer)
- Replacement of BB is time consuming, BB is also expensive

Discrete limiters:

Heat loads: \sim 0.5 MW/m² (steady state), \sim 0.1-10 GW/m² for 1.5-4 ms

- Better alignment options to toroidal field
- Separate, non-BB PHTS
- Leaks of limiters are less severe incidents than leaks of BB, and:
- We believe that divertor target-like PFCs could *prevent* the heat sink structure to fail during plasma-wall contact. This requires thermal insulation of heat sink structure \rightarrow e.g. thick W armour:

$$
t = \frac{(T_{W, melt} - T_{cucrZr, limit}) \cdot \lambda}{Q} = \frac{(3422^{\circ}C - 350^{\circ}C) \cdot 140^{\circ}W}{20^{\circ}W/m} = 22mm
$$

Damage of armour remains an issue of DEMO availability!

Limiter Armour R&D

R&D program required to develop:

- a) Armour providing thermal insulation, e.g. tungsten foam
- b) Armour not requiring replacement after plasma-wall contact

R. De Luca et al, SOFT 2018 P. Fanelli, final meeting WPPMI 2018

Simulations including vapor shielding

Preliminary simulations including vapor shielding have been performed on DEMO using TOKES code on: Central Disruption:

- Thermal quench duration 4ms
- Charged particles energy = $0.65GJ$ (0.5 of total thermal energy)

With vap. sh. Factor 10 reduction in Qwall (from 25 GW/m² to 2.5 GW/m²).

Max vaporization erosion is reduced from 700 μm to 1 μm.

Preliminary results. In line with ITER modelling [1] and exp. Validation [2]

[1] S.Pestchanyi, et al., FED, vol. 109, p. 141, 2016 [2] S.Pestchanyi, et al., FED, vol. 124, p. 401, 2017

Mitigated disruption simulations:TQ

Preliminary results: Mitigated U-VDE as R. Wenninger, EPS 2017, help from T. Hender: Initial thermal energy W_{th} =1.3GJ: 20% radiated at pre-TQ at MGI/SPI: remaining \approx 1GJ At TQ normally 80% is radiated in 1ms (controllable) -> $P_{rad} \approx 800$ GW

Wall protection concept – inboard and upper null area

Protection concept for upper null area:

- In upward VDEs plasma moves towards 2nd null:
	- Move 2nd null clockwise, or
	- Reduce upper triangularity, i.e. shift 2^{nd} null towards outboard
- 4 limiter components at new location of 2nd null
- Limiter interfaces can be accessed from the upper port
- Limiter is removed from the front
- Protection concept for inboard:
- Use of e.g. 4 inboard segments as limiters abandoned because Cu-alloy assumed requiring scheduled maintenance
- 4 limiters at equatorial level + 4 limiters at lower level with front side access to mechanical supports and coolant pipes, directly attached to VV
- RH through 4 equatorial limiter ports
- Inboard BB remains installed and connected up to 50 dpa (unless BB failure occurs)

Alternative concept: Inboard segment with Eurofer-based PFCs with new thermally insulating armour with high lifetime.

OPlasma scenario studies: e.g. upper null moved outwards, magnetostatic final CQ point, plasma-FW distance, Inverted triangularity.

Outline

- Introduction: ITER and DEMO PFC requirements
- Materials R&D for DEMO the baseline options
	- Plasma Facing Materials (Armor)
	- Copper-alloys (Heat sink materials)
	- Ferritic-martensitic steels (Structural Material)
- DEMO heat load requirements
	- First Wall (FW) and Limiters
	- Divertor
- **Conclusions**

Divertor power exhaust in ITER and DEMO

- Divertor power load is a key DEMO design constraint.
- **ITER targets heat flux design criteria:**
	- **10MW/m² steady state (order ~10⁴ cycles).**
	- **20MW/m² transients for ~10s & ~100 cycles.**
	- **Coolant pipe burn out ~35MW/m² (factor 1.7 from transient).**
- DEMO heat flux removal capability margin reduced due higher coolant temperature to avoid Cu embrittlement at high irradiation[1-2] (TBV).

Presently studied regimes to lower divertor heat flux load:

- Techniques to radiate the majority of the loss power.
- Plasma detachment.

Failure of the above controls may lead to sudden increase of heat flux: Transient loads critical for DEMO due to reduced margin to pipe burn out. [1] S.A. Fabritsiev, et al., Journal of Nuclear Materials (1996)

[2] S.A. Fabritsiev, et al., Plasma Devices and Operat., (1997).

Transient power load scan

• Sensitivity analysis to power steps

t c =200°C *t c* =180°C *t c* =160°C *t*

— Solid lines reach CHF, … dashed reach melting

Transient power load scan

00

• Coolant temperature @monoblock range scan *tc*= [80-200] °C Main parameters: armour thickness 5mm (W_t), coolant **pressure 4MPa**, W mono- Wt block width 28mm (X_w) , water velocity 12m/s, pipe diameter (d)/length(L).

Francesco Maviglia | 10th ITER International School | Daejeon, South Korea | 21-25 Jan. 2019| Page 61

xw

• Melting is not

 $-d$ -

Transient power load scan

• **DEMO** armour thickness range scan $W_t = [2, 5, 10]$ mm

Main parameters: coolant temp. 200°C, pressure 4MPa, pitch 28mm, water vel.12m/s.

HF transient map: Energy - Deposition time

- **Fast transients** (≤ 2-3ms): only the armour surface is affected. W melt limit is quickly exceeded
- Francesco Maviglia | 10th ITER International School | Daejeon, South Korea | 21-25 Jan. 2019| Page 63

Strike point sweeping parametric scan

Parametric scan: Heat flux chosen levels Q : [20, 30, 40] MW/m²

Sweeping frequency-amplitude operational range

The region where the HF to coolant **< 60%** (**safety factor= 1.7**) of CHF is a)0.5Hz & >20cm, and b)10cm&>1Hz, (for Q=30MW/m²)

Sweeping frequency-amplitude operational range

*Missing point if CHF reached. Union of **CHF**, **W-surf temp**. and **pipe temp**. ranges determines operational space of interest

Sweeping effect on overall plasma boundary variation

- Motion of the plasma core, including Radial Inner/Outer Gap (**RIG/ROG**) limited to less than 15% of the strike-point motion.
- Top Left (TL) Gap moves 30% of the strike-point motion at 0.2 Hz (slightly less than 20% at 1 Hz), due to the vicinity of a null point.

Thermal analysis with RACLETTE: 70 MW/m²

Results with incident Heat Flux = 70 MW/m²

- **1) HF to coolant**: In SS the CHF (pipe burn out) is reached in 0.7s, while the 10cm-1Hz sweeping is marginal, and the 20cm-1Hz allows 50% margin.
- **2) W armor temp.**: In SS the W surface melt at the CHF time, while in the 10cm-1Hz it reaches melting in ≈3s, and in the 20cm-1Hz the temp. reaches 2000°C(> recr.).
- **3) CuCrZr pipe temp**.: The pipe softening temperature of 350°C is reached in 0.5s in SS, and 1s in 10cm-1Hz seeping, while it is not reached for the 20cm-1Hz case.

Conclusions

- **□** DEMO requirements are different from ITER: wall load specification needs to be developed independently.
- **Q** Present first wall heat load limits of 1MW/m² can be achieved for steady state and controllable perturbation. Critical areas: baffles and upper FW
- Control margins, and tolerances detrimental effects will require further technology, geometry, and plasma optimization.
- Transient events as RU/RD plasma limited phases, and disruptive events exceed the standard BB limit: specific designs required to protect the wall.
- \Box Discrete (sacrificial) limiters requirements to avoid FW-BB severe damages, *e.g.* Loss Of Coolant Accident events.
- Prediction and design of sacrificial limiters for plasma-wall contact to be carefully assessed, possibly for any foreseeable and unforeseeable event, via geometry and plasma optimization:

Disruption simulations:

HF and REs

Several activities launched to predict possible contact points:

- Inter-machine perturbation database (JET, EAST, ASDEX, TCV)
- Modelling of perturbation effect on plasma shape-movement
- Simulations with CARMA0NL/CREATE & MAXFEA

